USER MANUAL
LDD-100/150/250-XX-YY
CW Diode Driver Power Supplies

The LDD-100/150/250 family of high power CW diode laser can be configured for output currents from as low as 10A to output current up to 80A at maximum power levels from 100W to 250W.

As a laser diode driver, the LDD diode driver acts as a programmable current source and delivers constant current based on the input program signal, $I_{\text{program}}(\pm)$, which is normally 0-10V. All units are configured with a maximum current and maximum voltage capability, depending on the user's requirements. LDD power supplies will deliver current, as programmed, into any load, providing the voltage requirements of that load do not exceed the maximum rated voltage of the unit. When the required compliance voltage is higher then the maximum rated output voltage of the unit, the unit will limit output current.

LDD diode drivers utilize a proprietary low loss, high frequency power factor correction circuit which keeps power factor above 0.98. Power factor corrected power supplies use up to 30% less input current and meet stringent IEC harmonic requirements. The output inverter is a state-of-the-art zero voltage switching (ZVS) inverter which permits very high frequency power conversion with minimum losses and electromagnetic noise.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDD Diode Drivers – Theory of Operation</td>
<td>3</td>
</tr>
<tr>
<td>LDD-100/150/250 Specifications</td>
<td>5</td>
</tr>
<tr>
<td>LDD-100/150/250 Interface</td>
<td>7</td>
</tr>
<tr>
<td>INSTALLATION AND OPERATION</td>
<td>9</td>
</tr>
<tr>
<td>Optional RS-232 Protocol</td>
<td>12</td>
</tr>
</tbody>
</table>

Tables and Figures

<table>
<thead>
<tr>
<th>Table/Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDD Laser Diode Power Supply Block Diagram</td>
<td>4</td>
</tr>
<tr>
<td>LDD-100/150/250 Outline Drawing</td>
<td>6</td>
</tr>
<tr>
<td>LDD-100/150/250 Interface Table</td>
<td>7</td>
</tr>
<tr>
<td>LDD-100/150/250 Interface Schematic</td>
<td>8</td>
</tr>
<tr>
<td>Input Connections</td>
<td>9</td>
</tr>
<tr>
<td>Output Connections</td>
<td>9</td>
</tr>
<tr>
<td>Response of output to Enable Signal</td>
<td>10</td>
</tr>
<tr>
<td>AC Input Requirements</td>
<td>11</td>
</tr>
</tbody>
</table>
LDD Diode Drivers - Theory of Operation
(Refer to Figure 1)

LDD laser diode drivers were designed specifically for the OEM high power CW laser diode systems. OEM power supplies for the laser diode industry have the following requirements:

- Safe laser diode operation
- Broad range of control of output current
- Safe rise/fall times
- Small size
- Power factor correction to conform with CE requirements
- Low conducted electromagnetic emissions
- Low leakage for medical applications

Referring to the “LDD Laser Diode Power Supply” block diagram, the following is a brief description of operation.

AC Input Power Circuitry
AC input power is processed through a line filter to reduce the conducted EMI to an acceptable level. The LDD-100/150/250 line filter has minimum capacitance to ground to minimize leakage currents. Earth Ground stud is provided near the AC input terminals and should be connected to the system ground.

Power Factor Correction Boost Inverter
The rectified input power is next applied to power factor boost inverter. This inverter boosts the input voltage to 400VDC. In the process of boosting the input AC voltage, the input AC current is adjusted so that is always in phase with the input AC voltage. Without this power factor correction circuit, the AC input current would be delivered to the power supply in high amplitude, narrow spikes, having a high harmonic content. With power factor correction, the non-50/60 Hz harmonics are reduced to near zero. Since only the fundamental frequency is now used to deliver power, the efficiency of the power supply is improved considerably.

One problem with standard input power factor correction circuits is that a high frequency switching circuit is placed across the line in the input side of the traditional input capacitor filter. This results in substantial switching noise conducted to the line. Lumina Power employs a proprietary soft-switching boost inverter which produces minimum switching noise, reduces switching losses, and results in a smaller heat sink associated with the power factor circuit.

Zero Voltage Switching (ZVS) Inverter
The ZVS inverter and the output transformer are used to step the 400VDC bus down to the appropriate output value. The ZVS inverter is the most modern high frequency/low loss/low noise topology utilized in power electronics today.
Instead of running the inverter in a traditional PWM mode, the inverter is run in a phase shift mode. With the appropriate output inductor and the appropriate capacitance across each switching device, in this case MOSFETS, there are virtually no switching losses in the inverter. The only losses in the devices are I^2R losses associated with the Drain/Source resistance of the MOSFETS. Therefore, the ZVS inverter also contributes to reduced losses, reduce EMI noise and a reduction in overall system heatsink requirements.

Output Circuit
The output filter is a single stage RC filter designed to keep ripple and output noise very low.

Control Circuit
The control circuit handles all the responsibilities associated with safe operation of the laser diode. Controlled rise and fall times, as well as tight current regulation, overvoltage and over power protection are controlled and monitored in the control circuit.

Auxiliary Power
All internal power supply requirements as well as the external +/-15V and +5V power supplies are derived from the power factor control boost inductor. All auxiliary power supplies are regulated by standard linear regulators.

![LDD-100/150/250 Block Diagram](image)

Figure 1
LDD-100/150/250 Block Diagram
LDD-100/150/250-XX-YY SPECIFICATIONS

XX = I_{out_{max}} YY = V_{out_{max}} XX * YY cannot exceed P_{out_{max}}

<table>
<thead>
<tr>
<th>Model</th>
<th>P_{out_{max}}</th>
<th>I_{out_{max}}</th>
<th>Input Voltage</th>
<th>Size (L x W x H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDD-100-XX-YY</td>
<td>100W</td>
<td>Can be configured from 10A to 80A</td>
<td>100-240VAC</td>
<td>6.75" x 3.63" x 3.25" 17.1 x 9.2 x 8.26 cm</td>
</tr>
<tr>
<td>LDD-150-XX-YY</td>
<td>150W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDD-250-XX-YY*</td>
<td>250W</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auxiliary Outputs:
- +5V @0.25A
- +15V @0.25A
- -15V @0.25A

Maximum compliance voltage determined by maximum rated power

RS-232 Option available
Other outputs available upon request

Input
- Voltage: 100-240VAC, 50/60Hz
- Power Factor: >.98

Interface
- Connector: 15 Pin “D” Sub Female
- Current Program: 0-10V for 0-Max Current
- Current Monitor: 0-10V for 0-Max Current
- Voltage Monitor: 0-10V for 0-Max Voltage

Performance
- Rise/Fall Time: ~600usec (10% to 90% Full Current)
- Current Regulation: 0.5% of Maximum output current
- Temperature Drift: 0.5% over temperature range after 30 minute warmup (<0.5% in first 30 minutes)
- Current Ripple: <0.5% of maximum output current
- Current Overshoot: <1% of maximum output current
- Power Limit: Limited to maximum power with power fold-back circuit

Environment
- Operating Temp: 0 to 40 °C
- Storage: -20 to 85 °C
- Humidity: 0 to 90% non-condensing
- Cooling: Forced air

Regulatory
- Leakage Current: <350uA

Approvals:

Dimensions: See Figure 2, LDD-100/150/250 Outline Drawing

02001026
Rev 1 ECO 7062
Figure 2
LDD-100/150/250 Outline Drawing
LDD-100/150/250-XX-YY Interface
(Where XX = Iout\text{max}, and YY = Vout\text{max})

Connector Type: 15 pin D-sub Female
(Refer to Figure 3, LDD Interface Schematic)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Name</th>
<th>Functional Voltage Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enable (input)</td>
<td>High = RUN = +5V to +15V Low = OFF = 0V</td>
<td>The Enable function turns the output section of the power supply ON and OFF. When the power supply is enabled, current is delivered to load as programmed via I\text{program}(+), Pin 7. Rise times resulting from Enable are approximately 25msec.</td>
</tr>
<tr>
<td>2</td>
<td>N/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Interlock (input)</td>
<td>Open = OFF Connect to GND = RUN</td>
<td>The Interlock function can be connected to external interlock switches such as door or overtemp switches.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td></td>
<td>Referred to (-) output of power supply.</td>
</tr>
<tr>
<td>5</td>
<td>Vout Monitor: (output)</td>
<td>0 – 10V = 0 – Vout\text{max}*</td>
<td>The output voltage of the supply can be monitored by Vout Monitor.</td>
</tr>
<tr>
<td>6</td>
<td>Iout Monitor (output)</td>
<td>0 – 10V = 0 – Iout\text{max}</td>
<td>The output current of the supply can be monitored by Iout Monitor.</td>
</tr>
<tr>
<td>7</td>
<td>I\text{program}(+) (input)</td>
<td>0 – 10V = 0 – Iout\text{max}</td>
<td>The power supply output current is set by applying a 0-10V analog signal to I\text{program}(+).</td>
</tr>
<tr>
<td>8</td>
<td>N/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td></td>
<td>Referred to (-) output of the power supply.</td>
</tr>
<tr>
<td>10,11</td>
<td>+5V @ 0.5A (output)</td>
<td></td>
<td>Auxiliary +5V power supply for user. Up to 0.5A output current capability.</td>
</tr>
<tr>
<td>12</td>
<td>-15V @ 0.5A (output)</td>
<td></td>
<td>Auxiliary -15V power supply for user. Up to 0.5A output current available.</td>
</tr>
<tr>
<td>13,14</td>
<td>+15V @ 0.5A (output)</td>
<td></td>
<td>Auxiliary +15V power supply for user. Up to 0.5A output current available.</td>
</tr>
<tr>
<td>15</td>
<td>Gnd</td>
<td></td>
<td>Referred to (-) output of the power supply.</td>
</tr>
</tbody>
</table>

TABLE 1: LDD-100/150/250 Interface

* If maximum compliance voltage is less than 10V, **Vout Monitor** will read output voltage directly. If maximum compliance voltage is greater than 10V, then **Vout Monitor** will be scaled such that 0-10V = 0-Vout\text{max}.

02001026
Rev 1 ECO 7062
Operation Manual:
LDD-100/150/250-XX-YY
Page 7 of 13
Figure 3
LDD-100/150/250 Interface
Installation and Operation of LDD-100/150/250 Diode Drivers

IMPORTANT INSTALLATION NOTES

- LDD-100/150/250 diode drivers are air cooled by internal fans. Do not restrict air flow near the input or output air vents of the power supply. If the unit overheats due to restricted air flow, it will shut down and remain off until the unit has cooled to a safe operating temperature.
- LDD-100/150/250 units should be mounted in systems using 8-32 (or M4) bolts to secure the mounting flanges to mounting plate.

SAFETY WARNING

Because LDD-100/150/250 units are designed for OEM applications, the user must connect AC input power to the power supply. Any input AC voltage must be considered extremely dangerous and extreme care must be taken to connect AC input power to the unit.

1. CONNECTING TO DIODE LASER Figure 5 shows the location of the LDD-100/150/250 output terminals. Connect diode laser load to the output terminals. Consult standard wire gauge tables to ensure proper gauge wire with respect to maximum output current. Although CW diode laser applications are generally free of voltage spikes associated with high speed Quasi-CW applications, it is still good practice to keep connections between the diode laser and power supply as short as possible to avoid I²R losses in the wire.

2. INTERFACE CONNECTION Connect user system to 15 pin D-sub connector shown in Figure 4. (Although the user interface is typically designed by the user, Lumina Power can provide any assistance necessary to modify interface program and monitor levels) See Table 1 and Figure 3 for description of LDD-100/150/250 Interface and the associated simplified interface schematic.

![Figure 4](Input Connections)

![Figure 5](Output Connections)
3. INTERFACE INFORMATION BEFORE APPLYING AC POWER: The unit may be programmed for output current via Pin-7, the Iprogram function. But there are three interface control signals which must be properly set before the output will deliver current as programmed by Iprogram.
 a. INTERLOCK: Pin 3, the Interlock, must be grounded via Pins 4, 9 or 15 in order for the output to deliver current.
 b. ENABLE: Pin 1, the ENABLE signal is a 5V to 24V signal used to turn the output section on. The ENABLE circuitry incorporates a soft start function which ensures rise times of approximately 15 to 20msec.

 c. Iprogram: Pin 7. A 0-10V signal results in 0 to Ioutmax, as long as the rated compliance voltage of the driver is not exceeded.

4. Operating the LDD
 a. AC INPUT POWER CONNECTION Connect AC power connections to power supply input power terminals as follows (refer to Figure 3).:
 - Neutral wire (16AWG) connected to the right contact of the AC input terminal (labeled N).
 - Line wire (16AWG) connected to the left contact of the AC terminal block.
 - Ground wire shall be crimped to a # 8 ring-lug and connected to the ground stud.

IMPORTANT NOTE
Make sure when connecting interface that the current program setting, Iprogram(+), is set no higher then the value required for operation. When AC power is applied and system is Enabled, output current will rise to this program value

![Graph of CH 1 and CH 2]

Response of Iout to ENABLE signal

IMPORTANT APPLICATION NOTE REGARDING AC INPUT POWER
AC Input wires should be at least #16 AWG, rated for at least 300V and 105DegC.
AC input power requirements for LDD-100/150/250 models are as follows:

Table 2
LDD-100/150/250 AC Input Power Requirements

<table>
<thead>
<tr>
<th>MODEL</th>
<th>INPUT POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDD-100-XX-YY</td>
<td>100-240 VAC, 50/60 Hz, 1.5A @115VAC</td>
</tr>
<tr>
<td>LDD-150-XX-YY</td>
<td>100-240 VAC, 50/60 Hz, 2.2A @115VAC</td>
</tr>
<tr>
<td>LDD-250-XX-YY</td>
<td>100-240 VAC, 50/60 Hz, 3.6A @220VAC</td>
</tr>
</tbody>
</table>

b. INTERFACE SETTINGS: Make sure INTERLOCK, Pin 3, is connected to GND.

c. APPLY INPUT AC POWER Turn ON AC power. After a few seconds the power supply fans should begin to run.

d. PROGRAMMING OUTPUT CURRENT Program LDD-100/150/250 power supply for desired output current. Once the unit has been ENABLED via Pin 1, a 0-10V signal applied to Iprogram, Pin 7, will program the LDD-100/150/250 diode driver for 0 to maximum rated output current.

e. ENABLE OUTPUT Apply +5V to +15V to ENABLE, Pin 1. The LDD-100/150/250 will deliver output current as programmed.

5. Monitoring LDD output and performance:

a. Current Monitor Power supply output current can be monitored via pin 6, Iout Monitor. A 0-10V signal will represent the output current from 0 to maximum rated output current.

b. Voltage Monitor Power supply output voltage can be monitored via pin 5, Vout Monitor. A 0-10V signal will represent the output voltage from 0-maximum rated output voltage. If maximum compliance voltage is less than 10V, Vout Monitor will read output voltage directly. If maximum compliance voltage is greater than 10V, then Vout Monitor will be scaled such that 0-10V = 0-Voutmax.
Optional RS-232 Protocol
LDD-100/150/250-XX-YY-RS

Refer to Figure 2, LDD-100/150/250 Outline Drawing for location of RS-232 Connector

The RS232 interface for Lumina supplies has the following characteristics:

- **Baud rate**: 9600
- **Command format**: ASCII characters terminated by carriage return
- **Reply formats**: ASCII characters terminated by carriage return
- **Connection**: 9 Pin “D” Female (Tx: Pin 2, Rx: Pin 3, GND: Pin 5)

The interface supports programming the output current and power limit of the supply and reading back the output current and voltage. The output can be turned on and off with a command as well.

<table>
<thead>
<tr>
<th>Command</th>
<th>Reply</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pxx.xx@xx.xx<cr></td>
<td><cr></td>
<td>Program output current to max rated output current $xx.xx$ between 0 and 10.00 = $0 - I_{out_{max}}$ (Note: Pxx.xx<cr> will also work)</td>
</tr>
<tr>
<td>I<cr></td>
<td>xx.xx<cr></td>
<td>Read output current $xx.xx$ between 0 and 10.00 = $0 - I_{out_{max}}$</td>
</tr>
<tr>
<td>V<cr></td>
<td>xx.xx<cr></td>
<td>Read output voltage $xx.xx$ between 0 and 10.00 = $0 - V_{out_{max}}$</td>
</tr>
<tr>
<td>ON<cr></td>
<td><cr></td>
<td>Enable supply output</td>
</tr>
<tr>
<td>OFF<cr></td>
<td><cr></td>
<td>Disable supply output</td>
</tr>
<tr>
<td>Jhkhkh<cr></td>
<td>?<cr></td>
<td>Response to unrecognized command</td>
</tr>
</tbody>
</table>

Numbers sent to the supply should be in fixed point decimal format. The numbers sent back will have four digits and a decimal point, but the resolution is limited to 12 bits and the accuracy is limited by the specifications of the supply.
Connections to Analog Interface when using RS-232

Interlock function, **Pin 3**, must be employed whether using LDD analog interface or RS-232. None of the other controls in the Analog interface need be utilized when using the RS-232 optional interface.

Analog Connector Type: 15 pin D-sub Female
(Refer to Figure 3, LDD Interface Schematic)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Name</th>
<th>Functional Voltage Level</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3 | Interlock (input) | Open = OFF
Connect to GND = RUN | The **Interlock** function can be connected to external interlock switches such as door or overtemp switches. **Must be used with RS Interface** |

Servicing LDD-100/150/250 Diode Drivers

LDD-100/150/250 units have no serviceable parts. Do not attempt to repair or service this unit in the field. For further information, contact Lumina Power at 978-241-8260.